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Outline

Investigate holomorphic extensions of symplectic fermions

I via embedding into a holomorphic VOA
(existence)

I via study of commutative algebras (+ extra properties) in a
braided tensor category
(uniqueness – up to two assumptions)



Why?

Symplectic fermions:

I first described in [Kausch ’95], by now best studied example of a
logarithmic CFT

I L0-action on representations may not be diagonalisable, thus
have non-semisimple representation theory

I finite number of irreducible representations, projective covers
have finite length, . . .

Holomorphic VOAs:

I VOAs V , all of whose modules are isom. to direct sums of V
I have (almost) modular invariant character

I all examples I know are lattice VOAs and orbifolds thereof

Can one find new examples by studying extensions of VOAs which
have logarithmic modules?

Answer for symplectic fermions (up to two assumptions) : No.
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Free super-bosons

Following [Frenkel, Lepowsky, Meurmann ’87], [Kac ’98] (see [IR ’12] for treatment of

non-semisimple aspects):

Fix

I a finite-dimensional super-vector space h

I a super-symmetric non-degenerate pairing (−,−) : h⊗ h→ C
i.e. (a, b) = δ|a|,|b|(−1)|a|(b, a)

Define the affine Lie super-algebras

ĥ = h⊗C C[t, t−1] ⊕ CK

ĥtw = h⊗C t
1
2C[t, t−1] ⊕ CK

with K even and central and super-bracket

[am, bn] = (a, b) m δm+n,0 K

a, b ∈ h , m, n ∈ Z resp. m, n ∈ Z + 1
2 .



. . . free super-bosons – representations

Consider ĥ and ĥtw modules M

I where K acts as id

I which are bounded below: For each v ∈ M there is N > 0 s.t.
a1

m1
· · · ak

mk
v = 0 for all ai ∈ h , m1 + · · ·+ mk ≥ N .

I where the space of ground states

Mgnd = {v ∈ M | amv = 0 for all a ∈ h,m > 0}

is finite-dimensional.

Categories of representations of above type:

Repfd[,1(ĥ) and Repfd[,1(ĥtw)



. . . free super-bosons – representations

Repfd(h) : category of finite-dimensional h-modules
(not semisimple)

Induction:
I N ∈ Repfd(h) gives ĥ-module

N̂ := U(ĥ)⊗U(h)≥0⊕CK N

(K acts as 1, am with m > 0 acts as zero, a0 acts as a)

I super-vector space V gives ĥtw-module

N̂ := U(ĥtw)⊗U(htw)>0⊕CK V

Theorem: The following functors are mutually inverse equivalences:

Repfd[,1(ĥ)

(−)gnd
++
Repfd(h)

(̂−)

ll
and Repfd[,1(ĥtw)

(−)gnd
**
sVect fd

(̂−)

ll



Symplectic fermions

The vacuum ĥ-module Ĉ1|0 is a vertex operator super-algebra
(VOSA) (central charge is super-dimension of h) .

For h purely odd, this is the symplectic fermion VOSA V(d) ,
where dim h = d .

V(d)ev : parity-even subspace, a vertex operator algebra (VOA).

Properties of V(d)ev : Abe ’05

I central charge c = −d

I C2-cofinite

I has 4 irreducible representations

S1 S2 S3 S4

lowest L0-weight 0 1 − d
16 − d

16 + 1
2

character χ1(τ) χ2(τ) χ3(τ) χ4(τ)

I RepV(d)ev is not semisimple



Modular invariance

Question:

Are there non-zero linear combinations of χ1, . . . , χ4 with
non-negative integral coefficients which are “almost”
modular invariant?

Almost modular invariant:
f (−1/τ) = ξ f (τ) and f (τ + 1) = ζ f (τ) for some ξ, ζ ∈ C×

Answer: Davydov, IR ≈’15

Combinations as above exist iff d ∈ 16Z>0 . In this case, the only
possibilities are Z (τ) = z1χ1(τ) + · · ·+ z4χ4(τ) with

(z1, z2, z3, z4) ∈ (2
d
2
−1, 2

d
2
−1, 1, 0)Z>0 .

Z (τ) is modular invariant iff d ∈ 48Z>0 .
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More questions

Minimal almost modular invariant solution:

Zmin(τ) = 2
d
2
−1
(
χ1(τ) + χ2(τ)

)
+ χ3(τ) (d ∈ 16Z>0)

Questions:

Q1 Is Zmin(τ) the character of a holomorphic extension
of V(d)ev ?

Q2 What are all holomorphic extensions of V(d)ev ?
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Questions:

Q1 Is Zmin(τ) the character of a holomorphic extension
of V(d)ev ?

Q2 What are all holomorphic extensions of V(d)ev ?

Summary of the answers:

Q1 Yes, a possible extension is the lattice VOA for the even
self-dual lattice D+

d/2 with modified stress tensor.

Q2 Making two assumptions, the answer to Q1 provides all
holomorphic extensions of V(d)ev .



Symplectic fermions as a sub-VOSA

Lattice Zr with standard inner product gives VOSA VZr .

Sublattice Dr = {m ∈ Zr |m1 + · · ·+ mr ∈ 2Z} is so(2r) root
lattice and gives parity-even part:

(VZr )ev = VDr .

We will need a non-standard stress tensor (aka. conformal vector or

Virasoro element) for VZr given by

T FF =
1

2

r∑
i=1

(H i
−1H i

−1 − H i
−2)Ω ,

where H i
m, i = 1, . . . , r generate Heisenberg algebra Hei(r) .

Central charge cFF = −2r .

Appear e.g. as “free boson with background charge” or “Feigin-Fuchs free boson”.

Detailed study in context of lattice VOAs in [Dong, Mason ’04].



. . . symplectic fermions as a sub-VOSA

Theorem: Davydov, IR ≈’15

For every r ∈ Z>0 , there is an embedding ι : V(2r)→ VZr of
VOSAs which satisfies ι(T SF ) = T FF .

Sketch of proof:

I Pick a symplectic basis a1, . . . , ar , b1, . . . , br of h , s.t.
(ai , bj ) = δi ,j .

I V(2r) generated by ai (x), bi (x) , OPE

ai (x)bj (0) = δi ,j x−2 + reg

I Free field construction: Kausch ’95, Fuchs, Hwang,
Semikhatov, Tipunin ’03

For m ∈ Zr write |m〉 for corresponding highest weight state
in VZr . Then (ei : standard basis vectors of Zr )

f ∗i := |ei 〉 and f i := −H i
−1 |−ei 〉

have OPE in f ∗i (x)f j (0) = δi ,j x−2 + reg .

I ĥ-module generated by Ω ∈ VZr is isomorphic to V(2r) .



. . . symplectic fermions as a sub-VOSA

For r ∈ 8Z have the even self-dual lattice

D+
r = Dr ∪ (Dr + [1])

with [1] = ( 1
2 , . . . ,

1
2 ) .

In particular, VDr ⊂ VD+
r

. Since (VZr )ev = VDr get:

Corollary:
V(2r)ev is a sub-VOA of VD+

r
.



Recall questions:

Q1 Is Zmin(τ) the character of a holomorphic extension
of V(d)ev ?

Q2 What are all holomorphic extensions of V(d)ev ?

Summary of the answers:

Q1 Yes, a possible extension is the lattice VOA for the even
self-dual lattice D+

d/2 with modified stress tensor. X
Q2 Making two assumptions, the answer to Q1 provides all

holomorphic extensions of V(d)ev . – next



The braided tensor category SF (d)

Take super-vector space h to be purely odd.

Had equivalences

Repfd[,1(ĥ) ∼= Repfd(h) , Repfd[,1(ĥtw) ∼= sVect fd

Write SF (d) = SF0 + SF1 with

SF0 = Repfd(h) , SF1 = sVect fd .

Aim:

1. Use “vertex operators” and conformal blocks for ĥ(tw) to
equip SF (d) with

I tensor product
I associator
I braiding

2. Find commutative algebras in SF (d) with certain extra
properties



Vertex operators

A slight generalisation of free boson vertex operators: IR ’12

Definition:
Let A,B,C ∈ SF0 . A vertex operator from A,B to C is a map

V : R>0 × (A⊗ B̂) −→ Ĉ

(Ĉ is the algebraic completion) such that

(i) even linear in A⊗ B̂ , smooth in x

(ii) L−1 ◦ V (x)− V (x) ◦ (idA ⊗ L−1) = d
dx V (x)

(iii) for all a ∈ h, am V (x) = V (x)
(
xma⊗ id + id ⊗ am

)
+ three more version when any two of A,B,C are in SF1 .

Vector space of all vertex operators from A,B to C :

VC
A,B

Same definition works for super-vector spaces h which are not purely odd,

i.e. for free super-bosons in general.



Tensor product

Definition:
The tensor product A ∗ B of A,B ∈ SF (d) is a representing object
for the functor C 7→ VC

A,B .

That is, there are isomorphism, natural in C ,

VC
A,B −→ SF (A ∗ B,C ) .

Write Pgnd : Â→ A for the projector to ground states.

Theorem: IR ’12

The map V 7→ Pgnd ◦ V (1) ,

VC
A,B →

{
Homh(A⊗ B,C ) ; A,B,C ∈ SF0

HomsVect(A⊗ B,C ) ; else

is an isomorphism, natural in A,B,C .



. . . tensor product

Recall: SF (d) = SF0 + SF1 , SF0 = Repfd(h) , SF1 = sVect fd

Combine results:

A B VC
A,B
∼= need to find ∼= to A ∗ B

0 0 Homh(A⊗ B,C ) Homh(A ∗ B,C )
0 1 HomsVect(A⊗ B,C ) HomsVect(A ∗ B,C )
1 0 HomsVect(A⊗ B,C ) HomsVect(A ∗ B,C )
1 1 HomsVect(A⊗ B,C ) Homh(A ∗ B,C )
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SF (d) has four simple objects (Π : parity shift):

1 = C1|0 ∈ SF0 , Π1 , T = C1|0 ∈ SF1 , ΠT

For example, T ∗ T = U(h) is reducible but indecomposable.
First noticed in triplet model W (2) = V(2)ev in [Gaberdiel, Kausch ’96].



. . . tensor product

Next compute

I braiding from monodromy of conformal 3-point blocks
(= vertex operators) ,

I associator from asymptotic behaviour of 4-point block
(computation partly conjectural)

Theorem:
SF (d) is a braided tensor category. In addition, SF (d) can be
equipped with duals and a ribbon twist to become a ribbon
category.



Relation to Rep(V(d)ev)

Huang, Lepowsky, Zhang ’10-’11

Rep(V(d)ev) carries the structure of a braided tensor category.

Conjecture:
The functor SF (d)→ Rep(V(d)ev) , A 7→ (Â)ev is well-defined
and gives an equivalence of braided tensor categories.

object A ∈ SF (d) : 1 Π1 T ΠT

L0-weight of (Â)ev : 0 1 − d
16 − d

16 + 1
2



Classification of holomorphic extensions

A holomorphic VOA is a VOA V such that all its admissible modules
are isomorphic to direct sums of V .

For rational VOAs V + extra conditions we have Huang, Kirillov,
Lepowsky ’15

Theorem:
There is a 1-1 correspondence between holomorphic extensions of
V and Lagrangian algebras in Rep(V) .



Lagrangian algebras

Defined (in modular tensor categories) in [Fröhlich, Fuchs, Schweigert, IR ’03]

(“trivialising algebra”) and [Davydov, Müger, Nikshych, Ostrik ’10] (“Lagrangian

algebra”)

C : braided tensor cat. with duals and ribbon twists (a ribbon category)

Define:

I algebra in C : object A ∈ C , morphisms µ : A⊗ A→ A ,
η : 1→ A , such that associative and unital

I commutative algebra in C : an algebra A such that
µ ◦ cA,A = µ where cU,V : U ⊗ V → V ⊗ U is the braiding

I (left A-)module: object M ∈ C , morphism ρ : A⊗M → M ,
such that compatible with µ, η

I local module: module M such that ρ ◦ cM,A ◦ cA,M = ρ

A Lagrangian algebra is a commutative algebra A with trivial twist
(i.e. θA = idA ), such that every local A-module is isomorphic to a
direct sum of A’s as a left module over itself.



Classification of holomorphic extensions

A holomorphic VOA is a VOA V such that all its admissible modules
are isomorphic to direct sums of V .

For rational VOAs V + extra conditions we have Huang, Kirillov,
Lepowsky ’15

Theorem:
There is a 1-1 correspondence between holomorphic extensions of
V and Lagrangian algebras in Rep(V) .

Assumption:
This theorem also holds for symplectic fermions, i.e. for V(d)ev
and Rep(V(d)ev)
(It should hold for C2-cofinite VOAs in general.)



. . . classification of holomorphic extensions

Theorem: Davydov, IR ≈’15

1. For d /∈ 16Z , SF (d) contains no Lagrangian algebras whose
class in K0(SF (d)) is a multiple of

2
d
2
−1
(

[1] + [Π1]
)

+ [T ] . (∗)

2. If d ∈ 16Z , for each Lagrangian subspace f ⊂ h , there is a
Lagrangian algebra H(f) ∈ SF (d) .

These algebras are mutually non-isomorphic, but any two are related by a

braided tensor autoequivalence of SF (d).

3. Any Lagrangian algebra in SF (d) whose class in K0 is a
multiple of (∗) is isomorphic to H(f) for some f
(in particular, its class in K0 is equal to the one in (∗)) .



. . . classification of holomorphic extensions

Combine:

I the theorem classifying Lagrangian algebras in SF (d)

I the conjecture that SF (d) ∼= RepV(d)ev
I the assumption that holomorphic extensions of V(d)ev are in

1-1 correspondence to Lagrangian algebras in Rep(V(d)ev)

I different choices of Lagrangian subspaces f ⊂ h in H(f) lead to isomorphic VOAs

(the isomorphism acts non-trivially also on V(d)ev)

This gives:

For d /∈ 16Z>0 , V(d)ev has no holomorphic extensions.

For d ∈ 16Z>0 , every holomorphic extension of V(d)ev is isomor-
phic to the inclusion ι : V(d)ev ↪→ VD+

d/2
(with stress tensor T FF ).


