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Outline

Investigate holomorphic extensions of symplectic fermions

» via embedding into a holomorphic VOA
(existence)

» via study of commutative algebras (+ extra properties) in a
braided tensor category
(uniqueness — up to two assumptions)



Why?

Symplectic fermions:

» first described in [Kausch '95], by now best studied example of a
logarithmic CFT

» [p-action on representations may not be diagonalisable, thus
have non-semisimple representation theory

» finite number of irreducible representations, projective covers
have finite length, ...
Holomorphic VOAs:
» VOAs V , all of whose modules are isom. to direct sums of V
» have (almost) modular invariant character
» all examples | know are lattice VOAs and orbifolds thereof

Can one find new examples by studying extensions of VOAs which
have logarithmic modules?



Why?

Symplectic fermions:

» first described in [Kausch '95], by now best studied example of a
logarithmic CFT

» [p-action on representations may not be diagonalisable, thus
have non-semisimple representation theory

» finite number of irreducible representations, projective covers
have finite length, ...
Holomorphic VOAs:
» VOAs V , all of whose modules are isom. to direct sums of V
» have (almost) modular invariant character
» all examples | know are lattice VOAs and orbifolds thereof

Can one find new examples by studying extensions of VOAs which
have logarithmic modules?

Answer for symplectic fermions (up to two assumptions) : No.



Free super-bosons

Following [Frenkel, Lepowsky, Meurmann '87], [Kac '98] (see [IR '12] for treatment of
non-semisimple aspects):

Fix
» a finite-dimensional super-vector space f

> a super-symmetric non-degenerate pairing (—, —) : h®h — C
i.e. (2, b) = 6‘3"‘b‘(—1)‘3|(b, a)

Define the affine Lie super-algebras

~

h = hacClt,t7!] @ CK
how = e t%C[t, t71] ® CK

with K even and central and super-bracket
[am, bn] = (@, b) MOpmyno K

a,beb, mnéeZresp. m,n€Z+%.



. free super-bosons — representations

Consider H and Etw modules M
» where K acts as id
» which are bounded below: For each v € M there is N > 0 s.t.
al -..ak v=0forallaeh, m+---+me>N.

m my
» where the space of ground states
Mgna = {v € M|apv =0 for all a € h, m > 0}

is finite-dimensional.

Categories of representations of above type:

Repg‘?l (H) and Repg‘?l (Htw )



. free super-bosons — representations

Rep'd(h) : category of finite-dimensional h-modules
(not semisimple)
Induction:

» N € Rep(h) gives h-module

N := U(b) Bu(h)seack N

(K acts as 1, am with m > 0 acts as zero, ag acts as a)

» super-vector space V gives hiy-module

N = U(buy) BU(biw)soeCK V

Theorem: The following functors are mutually inverse equivalences:

(=)gna (=)gna
Repﬁ‘}l (H) Rep™(h) and Repﬁ‘}l (Etw) sVectfd
e ~—
(=)

(=)



Symplectic fermions

The vacuum h-module CO is a vertex operator super-algebra
(VOSA) (central charge is super-dimension of f) .

For b purely odd, this is the symplectic fermion VOSA V(d) ,
where dimb =d .

V(d)ev : parity-even subspace, a vertex operator algebra (VOA).

Properties of V(d)ey : Abe '05
» central charge ¢ = —d
» (Co-cofinite

» has 4 irreducible representations

S1 S S3 Sa
lowest Lo-weight 0 1 -4 441

character x1(7)  x2(7) x3(r)  xa(7)
» RepV(d)ey is not semisimple



Modular invariance

Question:

Are there non-zero linear combinations of x1, ..., xa with
non-negative integral coefficients which are “almost”
modular invariant?

Almost modular invariant:
f(=1/7)=¢&f(7) and f(7+ 1) = (f(7) for some £, € C*



Modular invariance

Question:

Are there non-zero linear combinations of x1, ..., xa with
non-negative integral coefficients which are “almost”
modular invariant?

Almost modular invariant:
f(=1/7)=&f(r) and f(7+ 1) = ( f(7) for some &, ¢ € C*

Answer: Davydov, IR &='15
Combinations as above exist iff d € 16Z~¢ . In this case, the only
possibilities are Z(7) = z1x1(7) + - - - + zaxa(7) with

(21,22, 23,24) € (2g_1,2%_1,1,0)Z>0-

Z(7) is modular invariant iff d € 48Z~¢ .



More questions

Minimal almost modular invariant solution:

Zunin(7) = 2%_1()(1(7') +x2(7)) + x3(r)  (d € 16Z0)

Questions:

Q1 Is Zyin(7) the character of a holomorphic extension
of V(d)ev ?
Q2 What are all holomorphic extensions of V(d)ey ?



More questions

Minimal almost modular invariant solution:

d_
2

( (1) + XQ(T)) + x3(7) (d € 16Z~0)

Zmin( ) 2
= 2nm)H (6a(7)F +03(r)7 +0a(r)?)

Questions:

Q1 Is Zyin(7) the character of a holomorphic extension
of V(d)ev ?
Q2 What are all holomorphic extensions of V(d)ey ?



More questions

Minimal almost modular invariant solution:

d_
2

( (1) + XQ(T)) + x3(7) (d € 16Z~0)

Zmin( ) 2
= 2nm)H (6a(7)F +03(r)7 +0a(r)?)

Questions:

Q1 Is Zyin(7) the character of a holomorphic extension
of V(d)ev ?

Q2 What are all holomorphic extensions of V(d)ey ?

Summary of the answers:

Q1 Yes, a possible extension is the lattice VOA for the even
self-dual lattice D;,r/z with modified stress tensor.
Q2 Making two assumptions, the answer to Q1 provides all

holomorphic extensions of V(d)ey -



Symplectic fermions as a sub-VOSA

Lattice Z" with standard inner product gives VOSA V- .

Sublattice D, = {m € Z"|my + --- + m, € 2Z} is so(2r) root
lattice and gives parity-even part:

(VZV )ev — VD, .

We will need a non-standard stress tensor (aka. conformal vector or
Virasoro element) for Vzr given by

r

1 o ,
T =3 Z(Hl—lHl—l —HL)Q

24
i=1
where H! i =1,...,r generate Heisenberg algebra Hei(r) .
Central charge cfF = —2r .

Appear e.g. as “free boson with background charge” or “Feigin-Fuchs free boson” .
Detailed study in context of lattice VOAs in [Dong, Mason '04].



.symplectic fermions as a sub-VOSA

Theorem: Davydov, IR ~'15
For every r € Z~g , there is an embedding ¢ : V(2r) — V- of

VOSAs which satisfies o( T>F) = TFF .
Sketch of proof:
» Pick a symplectic basis a*,...,a", b}, ..., b  of b, s.t.
(a’, b’) = 5,‘J .
» V(2r) generated by a’(x), b’(x) , OPE
a'(x)P(0) = i x 2 +reg
» Free field construction: Kausch 95, Fuchs, Hwang,

Semikhatov, Tipunin '03
For m € Z" write |m) for corresponding highest weight state

in Vzr . Then (e;: standard basis vectors of Z")
- lei) and = —Hil |—ei)
have OPE in f*/(x)f/(0) = 6; j x 2 + reg .
> E—module generated by Q € Vg is isomorphic to V(2r) .



.symplectic fermions as a sub-VOSA

For r € 8Z have the even self-dual lattice
D} = D, U(D, + [1])
with [1] = (3,...,3) -
In particular, Vp, C Vi . Since (Vzr)ev = Vp, get:

Corollary:
V(2r)ey is a sub-VOA of Vp+



Recall questions:
Q1 Is Zyin(7) the character of a holomorphic extension
of V(d)ev ?
Q2 What are all holomorphic extensions of V(d)ey ?

Summary of the answers:

Q1 Yes, a possible extension is the lattice VOA for the even
self-dual lattice Dj/z with modified stress tensor. v

Q2 Making two assumptions, the answer to Q1 provides all
holomorphic extensions of V(d)ey . — next



The braided tensor category SF(d)

Take super-vector space ) to be purely odd.

Had equivalences
Repgfll (H) >~ Repld(h) Repﬁ‘}l (Htw) >~ sVect™d
Write SF(d) = SFo + SFy with
SFy = Repfd(f)) . SF = sVect'd .

Aim:
1. Use "vertex operators” and conformal blocks for H(tw) to
equip SF(d) with
» tensor product
» associator
» braiding
2. Find commutative algebras in SF(d) with certain extra
properties



Vertex operators
A slight generalisation of free boson vertex operators: IR '12

Definition:
Let A, B, C € SFy . A vertex operator from A, B to C is a map

V i Rugx (A®B) — C

(é the algebraic completion) such that

i) even linear in A® B , smooth in x
(i) Loyo V(x) = V(x)o(ida® L_1) = L V(x)
(iii) forall a€ b, apm V(x) = V(x)(x"a® id + id @ am)

+ three more version when any two of A, B, C are in SF; .
Vector space of all vertex operators from A, B to C :
Vis

Same definition works for super-vector spaces h which are not purely odd,
i.e. for free super-bosons in general.



Tensor product

Definition:
The tensor product A x B of A, B € SF(d) is a representing object
for the functor C — VAC,B .

That is, there are isomorphism, natural in C ,

Vip — SF(AxB,C).

Write Pgpq : A — A for the projector to ground states.

Theorem: IR '12
The map V = Pgngo V(1) ,

c Homy(A® B, C) ; A, B, C e SFy
VAB —
' Homgpect(A® B, C) ; else

is an isomorphism, natural in A, B, C .



... tensor product
Recall: SF(d) = SFo+ SF1 , SFo = Rep™(h) , SF = sVect™

Combine results:

A

0
0
1
1

B

0
1
0
1

C ~
Vig =

Homy(A® B, C)

Homgpect(A® B, C)
Homgpect(A® B, C)
Homgypect(A® B, C)

need to find = to Ax B

Homy(Ax B, C)
Homgpect(A* B, C)
Homgyect (A * B, C)
Homy(A x B, C)



... tensor product
Recall: SF(d) = SFo+ SF1 , SFo = Rep™(h) , SF = sVect™

Combine results:
A B VEB% need to find & to Ax B

Homy(A® B, C) Homy(Ax B, C) A® B
Homgpect(A® B, C) Homgpet(A*xB,C) A®B
Homgpect(A® B, C) Homgpect(A*xB,C) A®B

0
0
1
1 Homgpect(A® B,C) Homy(Ax B, C)

0
1
0
1



. tensor product

Recall: SF(d) = SFo+ SF1 , SFo = Rep™(h) , SF = sVect™

Combine results:

A

0
0
1
1

C ~
Vig =

Homy(A® B, C)

Homgpect(A® B, C)
Homgpect(A® B, C)
Homgpect(A® B, C)

need to find = to

Homy(Ax B, C)
Homgpect(A* B, C)
Homgyect (A * B, C)
Homy(A x B, C)

Ax B

A® B
A® B
A® B
Uh)@ A® B

Up to here everything worked for general free super-bosons. But to have
U(h) ® A® B € SF(d), U(h) must be finite-dimensional. Thus need h purely odd.



. tensor product
Recall: SF(d) = SFo+ SF1 , SFo = Rep'(h) , SF; = sVectd

Combine results:
A B VEB% need to find & to Ax B

0 0 Homy(A®B,C(C) Homy(A x B, C) A® B
0 1 Homgspet(A® B,C) Homgpet(AxB,C) A®B
1 0 Homgpet(A® B,C) Homspet(A*B,C) A®B
1 1 Homgyet(A® B,C) Homy(Ax B, C) Uh)oA® B

Up to here everything worked for general free super-bosons. But to have
U(h) ® A® B € SF(d), U(h) must be finite-dimensional. Thus need h purely odd.

SF(d) has four simple objects (I : parity shift):
1=Cc®esr, , M , T=cPesr , N7

For example, T * T = U(h) is reducible but indecomposable.
First noticed in triplet model W(2) = V(2)ey in [Gaberdiel, Kausch '96].



. tensor product

Next compute

» braiding from monodromy of conformal 3-point blocks

(= vertex operators) ,

» associator from asymptotic behaviour of 4-point block

(computation partly conjectural)

Theorem:

SF(d) is a braided tensor category. In addition, SF(d) can be
equipped with duals and a ribbon twist to become a ribbon
category.



Relation to Rep(V(d)ey)

Huang, Lepowsky, Zhang '10-'11
Rep(V(d)ev) carries the structure of a braided tensor category.

Conjecture: R
The functor SF(d) — Rep(V(d)ev) , A (A)ey is well-defined
and gives an equivalence of braided tensor categories.

object Ac SF(d): 1 Ml T nr
Lo-weight of (//4\\)CV 0 1 _% —d 4 %



Classification of holomorphic extensions

A holomorphic VOA is a VOA V such that all its admissible modules
are isomorphic to direct sums of V .

. H , Kirillov,
For rational VOAs V + extra conditions we have L:::v%skylr'llgv

Theorem:
There is a 1-1 correspondence between holomorphic extensions of
V and Lagrangian algebras in Rep(V) .



Lagrangian algebras

Defined (in modular tensor categories) in [Frohlich, Fuchs, Schweigert, IR '03]
(“trivialising algebra”) and [Davydov, Miiger, Nikshych, Ostrik '10] (“Lagrangian
algebra™)

C : braided tensor cat. with duals and ribbon twists (a ribbon category)
Define:
> algebra in C : object A€ C , morphisms p: AQA— A,

n:1— A, such that associative and unital

» commutative algebra in C : an algebra A such that
1O CAA= M wherecyy: U®V = V®U is the braiding

> (left A-)module: object M € C , morphism p: A M — M,
such that compatible with pu,n

» local module: module M such that pocyaccam=p
A Lagrangian algebra is a commutative algebra A with trivial twist

(i.e. Ba = ida ), such that every local A-module is isomorphic to a
direct sum of A’s as a left module over itself.



Classification of holomorphic extensions

A holomorphic VOA is a VOA V such that all its admissible modules
are isomorphic to direct sums of V .

Huang, Kirillov,

For rational VOAs V + extra conditions we have Lepowsky 15

Theorem:
There is a 1-1 correspondence between holomorphic extensions of
V and Lagrangian algebras in Rep(V) .

Assumption:

This theorem also holds for symplectic fermions, i.e. for V(d)ey
and Rep(V(d)ev)

(It should hold for Cy-cofinite VOAs in general.)



... classification of holomorphic extensions

Theorem: Davydov, IR ~'15

1. For d ¢ 16Z , SF(d) contains no Lagrangian algebras whose
class in Ko(SF(d)) is a multiple of

2571 ([1]+ [N1]) + [T]. (+)

2. If d € 16Z , for each Lagrangian subspace f C b , there is a
Lagrangian algebra H(f) € SF(d) .
These algebras are mutually non-isomorphic, but any two are related by a
braided tensor autoequivalence of SF(d).

3. Any Lagrangian algebra in SF(d) whose class in Kj is a
multiple of (x) is isomorphic to H(f) for some f

(in particular, its class in Ko is equal to the one in (x)) .



. classification of holomorphic extensions

Combine:
» the theorem classifying Lagrangian algebras in SF(d)
» the conjecture that SF(d) = RepV(d)ey

» the assumption that holomorphic extensions of V(d)ey are in
1-1 correspondence to Lagrangian algebras in Rep(V(d)ev)

» different choices of Lagrangian subspaces § C h in H(f) lead to isomorphic VOAs

(the isomorphism acts non-trivially also on V(d)ev)
This gives:

For d ¢ 16Z~¢ , V(d)ev has no holomorphic extensions.

For d € 16Z~¢ , every holomorphic extension of V(d)ey is isomor-
phic to the inclusion ¢ : V(d)ey — Vp+
(with stress tensor TFF). a2



